Overloaded Assignment Operator In C++ With Examples

The assignment operator (operator=) is used to copy values from one object to another already existing object.

Assignment vs Copy constructor

The purpose of the copy constructor and the assignment operator are almost equivalent -- both copy one object to another. However, the copy constructor initializes new objects, whereas the assignment operator replaces the contents of existing objects.

The difference between the copy constructor and the assignment operator causes a lot of confusion for new programmers, but it’s really not all that difficult. Summarizing:

  • If a new object has to be created before the copying can occur, the copy constructor is used (note: this includes passing or returning objects by value).
  • If a new object does not have to be created before the copying can occur, the assignment operator is used.

Overloading the assignment operator

Overloading the assignment operator (operator=) is fairly straightforward, with one specific caveat that we’ll get to. The assignment operator must be overloaded as a member function.

This prints:

5/3

This should all be pretty straightforward by now. Our overloaded operator= returns *this, so that we can chain multiple assignments together:

Issues due to self-assignment

Here’s where things start to get a little more interesting. C++ allows self-assignment:

This will call f1.operator=(f1), and under the simplistic implementation above, all of the members will be assigned to themselves. In this particular example, the self-assignment causes each member to be assigned to itself, which has no overall impact, other than wasting time. In most cases, a self-assignment doesn’t need to do anything at all!

However, in cases where an assignment operator needs to dynamically assign memory, self-assignment can actually be dangerous:

First, run the program as it is. You’ll see that the program prints “Alex” as it should.

Now run the following program:

You’ll probably get garbage output (or a crash). What happened?

Consider what happens in the overloaded operator= when the implicit object AND the passed in parameter (str) are both variable alex. In this case, m_data is the same as str._m_data. The first thing that happens is that the function checks to see if the implicit object already has a string. If so, it needs to delete it, so we don’t end up with a memory leak. In this case, m_data is allocated, so the function deletes m_data. But str.m_data is pointing to the same address! This means that str.m_data is now a dangling pointer.

Later on, when we’re copying the data from str into our implicit object, we’re accessing dangling pointer str.m_data. That leaves us either copying garbage data or trying to access memory that our application no longer owns (crash).

Detecting and handling self-assignment

Fortunately, we can detect when self-assignment occurs. Here’s a better implementation of our overloaded operator= for the Fraction class:

By checking if our implicit object is the same as the one being passed in as a parameter, we can have our assignment operator just return immediately without doing any other work.

Note that there is no need to check for self-assignment in a copy-constructor. This is because the copy constructor is only called when new objects are being constructed, and there is no way to assign a newly created object to itself in a way that calls to copy constructor.

Default assignment operator

Unlike other operators, the compiler will provide a default public assignment operator for your class if you do not provide one. This assignment operator does memberwise assignment (which is essentially the same as the memberwise initialization that default copy constructors do).

Just like other constructors and operators, you can prevent assignments from being made by making your assignment operator private or using the delete keyword:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

#include <cassert>

#include <iostream>

 

classFraction

{

private:

intm_numerator;

intm_denominator;

 

public:

    // Default constructor

    Fraction(intnumerator=0,intdenominator=1):

        m_numerator(numerator),m_denominator(denominator)

    {

        assert(denominator!=0);

    }

 

// Copy constructor

Fraction(constFraction&copy):

m_numerator(copy.m_numerator),m_denominator(copy.m_denominator)

{

// no need to check for a denominator of 0 here since copy must already be a valid Fraction

std::cout<<"Copy constructor called\n";// just to prove it works

}

 

        // Overloaded assignment

        Fraction&operator=(constFraction&fraction);

 

friendstd::ostream&operator<<(std::ostream&out,constFraction&f1);

        

};

 

std::ostream&operator<<(std::ostream&out,constFraction&f1)

{

out<<f1.m_numerator<<"/"<<f1.m_denominator;

returnout;

}

 

// A simplistic implementation of operator= (see better implementation below)

Fraction&Fraction::operator=(constFraction&fraction)

{

    // do the copy

    m_numerator=fraction.m_numerator;

    m_denominator=fraction.m_denominator;

 

    // return the existing object so we can chain this operator

    return*this;

}

 

intmain()

{

    Fraction fiveThirds(5,3);

    Fractionf;

    f=fiveThirds;// calls overloaded assignment

    std::cout<<f;

 

    return0;

}

intmain()

{

    Fraction f1(5,3);

    Fraction f2(7,2);

    Fraction f3(9,5);

 

    f1=f2=f3;// chained assignment

 

    return0;

}

intmain()

{

    Fraction f1(5,3);

    f1=f1;// self assignment

 

    return0;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

#include <iostream>

 

classMyString

{

private:

    char*m_data;

    intm_length;

 

public:

    MyString(constchar*data="",intlength=0):

        m_length(length)

    {

        if(!length)

            m_data=nullptr;

        else

            m_data=newchar[length];

 

        for(inti=0;i<length;++i)

            m_data[i]=data[i];

    }

 

    // Overloaded assignment

    MyString&operator=(constMyString&str);

 

    friendstd::ostream&operator<<(std::ostream&out,constMyString&s);

};

 

std::ostream&operator<<(std::ostream&out,constMyString&s)

{

    out<<s.m_data;

    returnout;

}

 

// A simplistic implementation of operator= (do not use)

MyString&MyString::operator=(constMyString&str)

{

    // if data exists in the current string, delete it

    if(m_data)delete[]m_data;

 

    m_length=str.m_length;

 

    // copy the data from str to the implicit object

    m_data=newchar[str.m_length];

 

    for(inti=0;i<str.m_length;++i)

        m_data[i]=str.m_data[i];

 

    // return the existing object so we can chain this operator

    return*this;

}

 

intmain()

{

    MyString alex("Alex",5);// Meet Alex

    MyString employee;

    employee=alex;// Alex is our newest employee

    std::cout<<employee;// Say your name, employee

 

    return0;

}

intmain()

{

    MyString alex("Alex",5);// Meet Alex

    alex=alex;// Alex is himself

    std::cout<<alex;// Say your name, Alex

 

    return0;

}

// A better implementation of operator=

Fraction&Fraction::operator=(constFraction&fraction)

{

    // self-assignment guard

    if(this==&fraction)

        return*this;

 

    // do the copy

    m_numerator=fraction.m_numerator;

    m_denominator=fraction.m_denominator;

 

    // return the existing object so we can chain this operator

    return*this;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

#include <cassert>

#include <iostream>

 

classFraction

{

private:

intm_numerator;

intm_denominator;

 

public:

    // Default constructor

    Fraction(intnumerator=0,intdenominator=1):

        m_numerator(numerator),m_denominator(denominator)

    {

        assert(denominator!=0);

    }

 

// Copy constructor

Fraction(constFraction&copy)=delete;

 

// Overloaded assignment

Fraction&operator=(constFraction&fraction)=delete;// no copies through assignment!

 

friendstd::ostream&operator<<(std::ostream&out,constFraction&f1);

        

};

 

std::ostream&operator<<(std::ostream&out,constFraction&f1)

{

out<<f1.m_numerator<<"/"<<f1.m_denominator;

returnout;

}

 

intmain()

{

    Fraction fiveThirds(5,3);

    Fractionf;

    f=fiveThirds;// compile error, operator= has been deleted

    std::cout<<f;

 

    return0;

}

Operator overloading[edit]

Operator overloading (less commonly known as ad-hoc polymorphism) is a specific case of polymorphism (part of the OO nature of the language) in which some or all operators like , or are treated as polymorphic functions and as such have different behaviors depending on the types of its arguments. Operator overloading is usually only syntactic sugar. It can easily be emulated using function calls.

Consider this operation:

Using operator overloading permits a more concise way of writing it, like this:

a + b * c

(Assuming the operator has higher precedence than .)

Operator overloading can provide more than an aesthetic benefit, since the language allows operators to be invoked implicitly in some circumstances. Problems, and critics, to the use of operator overloading arise because it allows programmers to give operators completely free functionality, without an imposition of coherency that permits to consistently satisfy user/reader expectations. Usage of the operator is an example of this problem.

// The expressiona<<1;

Will return twice the value of if is an integer variable, but if is an output stream instead this will write "1" to it. Because operator overloading allows the programmer to change the usual semantics of an operator, it is usually considered good practice to use operator overloading with care.

To overload an operator is to provide it with a new meaning for user-defined types. This is done in the same fashion as defining a function. The basic syntax follows (where @ represents a valid operator):

return_typeoperator@(argument_list){// ... definition}

Not all operators may be overloaded, new operators cannot be created, and the precedence, associativity or arity of operators cannot be changed (for example ! cannot be overloaded as a binary operator). Most operators may be overloaded as either a member function or non-member function, some, however, must be defined as member functions. Operators should only be overloaded where their use would be natural and unambiguous, and they should perform as expected. For example, overloading + to add two complex numbers is a good use, whereas overloading * to push an object onto a vector would not be considered good style.

Note:
Operator overloading should only be utilized when the meaning of the overloaded operator's operation is unambiguous and practical for the underlying type and where it would offer a significant notational brevity over appropriately named function calls.

A simple Message Header
// sample of Operator Overloading#include<string>classPlMessageHeader{std::stringm_ThreadSender;std::stringm_ThreadReceiver;//return true if the messages are equal, false otherwiseinlinebooloperator==(constPlMessageHeader&b)const{return((b.m_ThreadSender==m_ThreadSender)&&(b.m_ThreadReceiver==m_ThreadReceiver));}//return true if the message is for nameinlineboolisFor(conststd::string&name)const{return(m_ThreadReceiver==name);}//return true if the message is for nameinlineboolisFor(constchar*name)const{return(m_ThreadReceiver==name);// since name type is std::string, it becomes unsafe if name == NULL}};

Note:
The use of the keyword in the example above is technically redundant, as functions defined within a class definition like this are implicitly inline.

Operators as member functions[edit]

Aside from the operators which must be members, operators may be overloaded as member or non-member functions. The choice of whether or not to overload as a member is up to the programmer. Operators are generally overloaded as members when they:

  1. change the left-hand operand, or
  2. require direct access to the non-public parts of an object.

When an operator is defined as a member, the number of explicit parameters is reduced by one, as the calling object is implicitly supplied as an operand. Thus, binary operators take one explicit parameter and unary operators none. In the case of binary operators, the left hand operand is the calling object, and no type coercion will be done upon it. This is in contrast to non-member operators, where the left hand operand may be coerced.

// binary operator as member function//Vector2D Vector2D::operator+(const Vector2D& right)const [...]// binary operator as non-member function//Vector2D operator+(const Vector2D& left, const Vector2D& right)[...]// binary operator as non-member function with 2 arguments //friend Vector2D operator+(const Vector2D& left, const Vector2D& right) [...]// unary operator as member function//Vector2D Vector2D::operator-()const {...}// unary operator as non-member function[...]//Vector2D operator-(const Vector2D& vec) [...]

Overloadable operators[edit]

Arithmetic operators[edit]
  • + (addition)
  • - (subtraction)
  • * (multiplication)
  • / (division)
  • % (modulus)

As binary operators, these involve two arguments which do not have to be the same type. These operators may be defined as member or non-member functions. An example illustrating overloading for the addition of a 2D mathematical vector type follows.

Vector2DVector2D::operator+(constVector2D&right){Vector2Dresult;result.set_x(x()+right.x());result.set_y(y()+right.y());returnresult;}

It is good style to only overload these operators to perform their customary arithmetic operation. Because operator has been overloaded as member function, it can access private fields.

Bitwise operators[edit]
  • ^ (XOR)
  • | (OR)
  • & (AND)
  • ~ (complement)
  • << (shift left, insertion to stream)
  • >> (shift right, extraction from stream)

All of the bitwise operators are binary, except complement, which is unary. It should be noted that these operators have a lower precedence than the arithmetic operators, so if ^ were to be overloaded for exponentiation, x ^ y + z may not work as intended. Of special mention are the shift operators, << and >>. These have been overloaded in the standard library for interaction with streams. When overloading these operators to work with streams the rules below should be followed:

  1. overload << and >> as friends (so that it can access the private variables with the stream be passed in by references
  2. (input/output modifies the stream, and copying is not allowed)
  3. the operator should return a reference to the stream it receives (to allow chaining, cout << 3 << 4 << 5)
An example using a 2D vector
friendostream&operator<<(ostream&out,constVector2D&vec)// output{out<<"("<<vec.x()<<", "<<vec.y()<<")";returnout;}friendistream&operator>>(istream&in,Vector2D&vec)// input{doublex,y;// skip opening paranthesisin.ignore(1);// read xin>>x;vec.set_x(x);// skip delimiterin.ignore(2);// read yin>>y;vec.set_y(y);// skip closing paranthesisin.ignore(1);returnin;}
Assignment operator[edit]

The assignment operator, =, must be a member function, and is given default behavior for user-defined classes by the compiler, performing an assignment of every member using its assignment operator. This behavior is generally acceptable for simple classes which only contain variables. However, where a class contains references or pointers to outside resources, the assignment operator should be overloaded (as general rule, whenever a destructor and copy constructor are needed so is the assignment operator), otherwise, for example, two strings would share the same buffer and changing one would change the other.

In this case, an assignment operator should perform two duties:

  1. clean up the old contents of the object
  2. copy the resources of the other object

For classes which contain raw pointers, before doing the assignment, the assignment operator should check for self-assignment, which generally will not work (as when the old contents of the object are erased, they cannot be copied to refill the object). Self assignment is generally a sign of a coding error, and thus for classes without raw pointers, this check is often omitted, as while the action is wasteful of cpu cycles, it has no other effect on the code.

Example
classBuggyRawPointer{// example of super-common mistakeT*m_ptr;public:BuggyRawPointer(T*ptr):m_ptr(ptr){}BuggyRawPointer&operator=(BuggyRawPointerconst&rhs){deletem_ptr;// free resource; // Problem here!m_ptr=0;m_ptr=rhs.m_ptr;return*this;};};BuggyRawPointerx(newT);x=x;// We might expect this to keep x the same. This sets x.m_ptr == 0. Oops!// The above problem can be fixed like so:classWithRawPointer2{T*m_ptr;public:WithRawPointer2(T*ptr):m_ptr(ptr){}WithRawPointer2&operator=(WithRawPointer2const&rhs){if(this!=&rhs){deletem_ptr;// free resource;m_ptr=0;m_ptr=rhs.m_ptr;}return*this;};};WithRawPointer2x2(newT);x2=x2;// x2.m_ptr unchanged.

Another common use of overloading the assignment operator is to declare the overload in the private part of the class and not define it. Thus any code which attempts to do an assignment will fail on two accounts, first by referencing a private member function and second fail to link by not having a valid definition. This is done for classes where copying is to be prevented, and generally done with the addition of a privately declared copy constructor

Example
classDoNotCopyOrAssign{public:DoNotCopyOrAssign(){};private:DoNotCopyOrAssign(DoNotCopyOrAssignconst&);DoNotCopyOrAssign&operator=(DoNotCopyOrAssignconst&);};classMyClass:publicDoNotCopyOrAssign{public:MyClass();};MyClassx,y;x=y;// Fails to compile due to private assignment operator;MyClassz(x);// Fails to compile due to private copy constructor.
Relational operators[edit]
  • == (equality)
  • != (inequality)
  • > (greater-than)
  • < (less-than)
  • >= (greater-than-or-equal-to)
  • <= (less-than-or-equal-to)

All relational operators are binary, and should return either true or false. Generally, all six operators can be based off a comparison function, or each other, although this is never done automatically (e.g. overloading > will not automatically overload < to give the opposite). There are, however, some templates defined in the header <utility>; if this header is included, then it suffices to just overload operator== and operator<, and the other operators will be provided by the STL.

Logical operators[edit]
  • ! (NOT)
  • && (AND)
  • || (OR)

The logical operators AND are used when evaluating two expressions to obtain a single relational result.The operator corresponds to the boolean logical operation AND,which yields true if operands are true,and false otherwise.The following panel shows the result of operator evaluating the expression.

The ! operator is unary, && and || are binary. It should be noted that in normal use, && and || have "short-circuit" behavior, where the right operand may not be evaluated, depending on the left operand. When overloaded, these operators get function call precedence, and this short circuit behavior is lost. It is best to leave these operators alone.

Example
boolFunction1();boolFunction2();Function1()&&Function2();

If the result of Function1() is false, then Function2() is not called.

MyBoolFunction3();MyBoolFunction4();booloperator&&(MyBoolconst&,MyBoolconst&);Function3()&&Function4()

Both Function3() and Function4() will be called no matter what the result of the call is to Function3() This is a waste of CPU processing, and worse, it could have surprising unintended consequences compared to the expected "short-circuit" behavior of the default operators. Consider:

externMyObject*ObjectPointer;boolFunction1(){returnObjectPointer!=null;}boolFunction2(){returnObjectPointer->MyMethod();}MyBoolFunction3(){returnObjectPointer!=null;}MyBoolFunction4(){returnObjectPointer->MyMethod();}booloperator&&(MyBoolconst&,MyBoolconst&);Function1()&&Function2();// Does not execute Function2() when pointer is nullFunction3()&&Function4();// Executes Function4() when pointer is null
Compound assignment operators[edit]
  • += (addition-assignment)
  • -= (subtraction-assignment)
  • *= (multiplication-assignment)
  • /= (division-assignment)
  • %= (modulus-assignment)
  • &= (AND-assignment)
  • |= (OR-assignment)
  • ^= (XOR-assignment)
  • <<= (shift-left-assignment)
  • >>= (shift-right-assignment)

Compound assignment operators should be overloaded as member functions, as they change the left-hand operand. Like all other operators (except basic assignment), compound assignment operators must be explicitly defined, they will not be automatically (e.g. overloading = and + will not automatically overload +=). A compound assignment operator should work as expected: A @= B should be equivalent to A = A @ B. An example of += for a two-dimensional mathematical vector type follows.

Vector2D&Vector2D::operator+=(constVector2D&right){this->x+=right.x;this->y+=right.y;return*this;}
Increment and decrement operators[edit]
  • ++ (increment)
  • -- (decrement)

Increment and decrement have two forms, prefix (++i) and postfix (i++). To differentiate, the postfix version takes a dummy integer. Increment and decrement operators are most often member functions, as they generally need access to the private member data in the class. The prefix version in general should return a reference to the changed object. The postfix version should just return a copy of the original value. In a perfect world, A += 1, A = A + 1, A++, ++A should all leave A with the same value.

Example
SomeValue&SomeValue::operator++()// prefix{++data;return*this;}SomeValueSomeValue::operator++(intunused)// postfix{SomeValueresult=*this;++data;returnresult;}

Often one operator is defined in terms of the other for ease in maintenance, especially if the function call is complex.

SomeValueSomeValue::operator++(intunused)// postfix{SomeValueresult=*this;++(*this);// call SomeValue::operator++()returnresult;}
Subscript operator[edit]

The subscript operator, [ ], is a binary operator which must be a member function (hence it takes only one explicit parameter, the index). The subscript operator is not limited to taking an integral index. For instance, the index for the subscript operator for the std::map template is the same as the type of the key, so it may be a string etc. The subscript operator is generally overloaded twice; as a non-constant function (for when elements are altered), and as a constant function (for when elements are only accessed).

Function call operator[edit]

The function call operator, ( ), is generally overloaded to create objects which behave like functions, or for classes that have a primary operation. The function call operator must be a member function, but has no other restrictions - it may be overloaded with any number of parameters of any type, and may return any type. A class may also have several definitions for the function call operator.

Address of, Reference, and Pointer operators[edit]

These three operators, operator&(), operator*() and operator->() can be overloaded. In general these operators are only overloaded for smart pointers, or classes which attempt to mimic the behavior of a raw pointer. The pointer operator, operator->() has the additional requirement that the result of the call to that operator, must return a pointer, or a class with an overloaded operator->(). In general A == *&A should be true.

Note that overloading operator& invokes undefined behavior:

ISO/IEC 14882:2003, Section 5.3.1
The address of an object of incomplete type can be taken, but if the complete type of that object is a class type that declares operator&() as a member function, then the behavior is undefined (and no diagnostic is required).
Example
classT{public:constmemberFunction()const;};// forward declarationclassDullSmartReference;classDullSmartPointer{private:T*m_ptr;public:DullSmartPointer(T*rhs):m_ptr(rhs){};DullSmartReferenceoperator*()const{returnDullSmartReference(*m_ptr);}T*operator->()const{returnm_ptr;}};classDullSmartReference{private:T*m_ptr;public:DullSmartReference(T&rhs):m_ptr(&rhs){}DullSmartPointeroperator&()const{returnDullSmartPointer(m_ptr);}// conversion operatoroperatorT(){return*m_ptr;}};DullSmartPointerdsp(newT);dsp->memberFunction();// calls T::memberFunctionTt;DullSmartReferencedsr(t);dsp=&dsr;t=dsr;// calls the conversion operator

These are extremely simplified examples designed to show how the operators can be overloaded and not the full details of a SmartPointer or SmartReference class. In general you won't want to overload all three of these operators in the same class.

Comma operator[edit]

The comma operator,() , can be overloaded. The language comma operator has left to right precedence, the operator,() has function call precedence, so be aware that overloading the comma operator has many pitfalls.

Example
MyClassoperator,(MyClassconst&,MyClassconst&);MyClassFunction1();MyClassFunction2();MyClassx=Function1(),Function2();

For non overloaded comma operator, the order of execution will be Function1(), Function2(); With the overloaded comma operator, the compiler can call either Function1(), or Function2() first.

Member Reference operators[edit]

The two member access operators, operator->() and operator->*() can be overloaded. The most common use of overloading these operators is with defining expression template classes, which is not a common programming technique. Clearly by overloading these operators you can create some very unmaintainable code so overload these operators only with great care.

When the -> operator is applied to a pointer value of type (T *), the language dereferences the pointer and applies the . member access operator (so x->m is equivalent to (*x).m). However, when the -> operator is applied to a class instance, it is called as a unary postfix operator; it is expected to return a value to which the -> operator can again be applied. Typically, this will be a value of type (T *), as in the example under Address of, Reference, and Pointer operators above, but can also be a class instance with operator->() defined; the language will call operator->() as many times as necessary until it arrives at a value of type (T *).

Memory management operators[edit]
  • new (allocate memory for object)
  • new[ ] (allocate memory for array)
  • delete (deallocate memory for object)
  • delete[ ] (deallocate memory for array)

The memory management operators can be overloaded to customize allocation and deallocation (e.g. to insert pertinent memory headers). They should behave as expected, new should return a pointer to a newly allocated object on the heap, delete should deallocate memory, ignoring a NULL argument. To overload new, several rules must be followed:

  • new must be a member function
  • the return type must be void*
  • the first explicit parameter must be a size_t value

To overload delete there are also conditions:

  • delete must be a member function (and cannot be virtual)
  • the return type must be void
  • there are only two forms available for the parameter list, and only one of the forms may appear in a class:
Conversion operators[edit]

Conversion operators enable objects of a class to be either implicitly (coercion) or explicitly (casting) converted to another type. Conversion operators must be member functions, and should not change the object which is being converted, so should be flagged as constant functions. The basic syntax of a conversion operator declaration, and declaration for an int-conversion operator follows.

operator''type''()const;// const is not necessary, but is good styleoperatorint()const;

Notice that the function is declared without a return-type, which can easily be inferred from the type of conversion. Including the return type in the function header for a conversion operator is a syntax error.

doubleoperatordouble()const;// error - return type included

Operators which cannot be overloaded[edit]

  • ?: (conditional)
  • . (member selection)
  • .* (member selection with pointer-to-member)
  • :: (scope resolution)
  • (object size information)
  • typeid (object type information)

To understand the reasons why the language doesn't permit these operators to be overloaded, read "Why can't I overload dot, ::, , etc.?" at the Bjarne Stroustrup's C++ Style and Technique FAQ ( http://www.stroustrup.com/bs_faq2.html#overload-dot ).

One thought on “Overloaded Assignment Operator In C++ With Examples

Leave a Reply

Your email address will not be published. Required fields are marked *